
Project Zoran: CelesteBot
An application of NEAT machine learning for testing video games

Matoska Waltz – EECS 499 Section 210: Video Game Independent Research
www.projectzoran.com

Introduction

NEAT

CelesteBot
After making these improvements, I ran the bot for about 1,200 generations on
Celeste level 1A, with checkpoints present in each room to guide the bot. It was run
with a 30x30 vision grid at 10x speed. Each generation tests 30 organisms before
evolving, resulting in 30 attempts by the bot to complete the level. With gameplay
time, reset time, and processing delays, it took up taking about 20 hours to complete
1,200 generations at 10x speed. In this time, the farthest the bot made it was to the
3rd room. It is possible that running the training with different NEAT settings, such as a
higher or lower chance to add a connection or a node, would yield more successful
results. CelesteBot still needs work, but it demonstrated some success and is worth
investigating and developing further. Perfecting CelesteBot would have significant
implications for the rest of the platforming genre, as it would then be possible to
automatically generate TASes for most 2D platformers.

One problem runners face is the inability to perform certain maneuvers in their speed
game without lots of practice. This inability might lead them to believe such a
maneuver is impossible. It can take a long time for the community around a game to
discover all the tricks possible to optimize times. The TAS (Tool Assisted Speedrun)
community helps with this by developing bots that can speed run games better than
humans. These runs can take a long time to create, as each input must be painstakingly
scripted in advance of the run. Project Zoran is an attempt to develop a tool that can
create these TAS bots automatically by leveraging the power of machine learning.

MarI/O
This mod contained a NEAT implementation, including all the essentials for running
machine learning training. However, it was missing some key features that would
improve functionality significantly. My time was spent implementing these features:
• Entity and tile caching – Previously, tile and entity positions weren’t being

cached and were instead being located through collision detection every frame.
By implementing caching, the bot’s vision could be expanded from 10x10 to
30x30 without a significant performance loss.

• Data serialization – Previously, all NEAT population data was held in memory. If
the game was ever closed, all this training data was lost forever. Serialization
allows for the saving and loading of population data between training sessions.

• Fast mode – The game can be run at around 10x speed consistently to get
training done more quickly.

Aside from these major features, I also fixed several bugs, improved the bot’s vision
for distinct entities, and optimized the machine brain rendering.

Awesome Games Done Quick 2019 Super Mario World race between 4 runners. (Image: rockpapershotgun.com)

Physical representation of TASbot at Games Done Quick events.
(Image: arstechnica.com)

Illustration demonstrating how NEAT mutates. (Image: slideshare.net/theavs)

Machine vision is shown in the upper left, the neural net is represented by red and green lines spanning input and output nodes.
(Image: engadget.com)

Machine vision is shown by the white, green, and blue squares. Neural net is represented by red and green lines and nodes.

The first room of Celeste level 1A.
CelesteBot neural net shown is quite late in training, and is highly developed. Vision input is mapped to controller output.

Project Zoran is a project
based on the concept of
applying artificial intelligence
to speed running. Speed
running is a hobby in which
players attempt to complete
games as quickly as possible.
Runners practice to improve
their personal best time and
compete for the world record.
This practice pays off at
Games Done Quick, a biannual
speed running marathon
hosted to raise money for
cancer prevention.

NeuroEvolution of
Augmented Topologies is a
method for generating neural
networks. Each NEAT
organism consists of nodes
and connections mapping a
set of inputs to a set of
outputs. Organisms mutate in
a genetic format, sometimes
randomly and sometimes by
combining multiple
successful organisms. Success
is determined by a fitness
metric, species with low
fitness eventually die out and
are replaced by the high
fitness species.

MarI/O is a well known existing application of NEAT for playing games developed by
popular Youtuber SethBling. It can play Super Mario World (USA) and Super Mario
Bros. It uses a simplified view of the game state as the input to NEAT, and uses the
game controller buttons as the output. For Mario, the fitness model is very simple:
moving right is always good. If Mario dies or gets stuck, MarI/O moves on to the next
NEAT genome and resets the game to a save state at the start of the level. Initially,
the bot knows nothing about the game. After many repetitions, it becomes
competent and could be confused for a human player.

CelesteBot is a Celeste mod built using the C# Everest framework, it is an application of
NEAT machine learning for playing Celest. It is vision based, it simplifies the region near
the player into a grid of colliding tiles and entities. It uses this as input, along with
parameters like player position, velocity, player stamina, and a Boolean representing
whether the player can dash. These inputs are mapped to outputs on the game pad
representing game controls: up, down, left, right, jump, dash, and grab. These controls
are then executed in game. This process occurs once per frame. The bot’s effectiveness
is determined through a performance metric, it is based on distance toward the next
checkpoint. Multiple checkpoints can be tracked sequentially, thus a route through a
map can be pre-planned for the bot.

Features

Findings

